FSU researchers capture high-resolution images of magnesium ions interacting with CRISPR gene-editing enzyme

Hong Li

The gene-editing technology known as CRISPR has led to revolutionary changes in agriculture, health research and more.

In research published in Nature Catalysis, scientists at Florida State University produced the first high-resolution, time-lapsed images showing magnesium ions interacting with the CRISPR-Cas9 enzyme while it cut strands of DNA, providing clear evidence that magnesium plays a role in both chemical bond breakage and near-simultaneous DNA cutting.

“If you are cutting genes, you don’t want to have only one strand of DNA broken, because the cell can repair it easily without editing. You want both strands to be broken,” said Hong Li, professor in the Department of Chemistry and Biochemistry and director of the Institute of Molecular Biophysics. “You need two cuts firing close together. Magnesium plays a role in that, and we saw exactly how that works.”