PubMed Link

  1. Hand, T.H., Das, A. & Li, H. Directed evolution studies of a thermophilic Type II-C Cas9. Methods in enzymology616, 265-288 (2019).
  2. Yu, G., Zhao, Y. & Li, H. The multistructural forms of box C/D ribonucleoprotein particles. RNA (New York, N.Y.)24, 1625-1633 (2018).
  3. Hand, T.H. et al. Phosphate Lock Residues of Acidothermus cellulolyticus Cas9 Are Critical to Its Substrate Specificity. ACS synthetic biology(2018).
  4. Tsui, T.K.M., Hand, T.H., Duboy, E.C. & Li, H. The Impact of DNA Topology and Guide Length on Target Selection by a Cytosine-Specific Cas9. ACS synthetic biology6, 1103-1113 (2017).
  5. Tian, S. et al. Pih1p-Tah1p Puts a Lid on Hexameric AAA+ ATPases Rvb1/2p. Structure (London, England : 1993)25, 1519-1529.e1514 (2017).
  6. Sefcikova, J., Roth, M., Yu, G. & Li, H. Cas6 processes tight and relaxed repeat RNA via multiple mechanisms: A hypothesis. BioEssays : news and reviews in molecular, cellular and developmental biology39(2017).
  7. Shao, Y. et al. A Non-Stem-Loop CRISPR RNA Is Processed by Dual Binding Cas6. Structure (London, England : 1993)24, 547-554 (2016).
  8. Wu, J.J. et al. Inhibition of cGAS DNA Sensing by a Herpesvirus Virion Protein. Cell host & microbe18, 333-344 (2015).
  9. Tsui, T.K. & Li, H. Structure Principles of CRISPR-Cas Surveillance and Effector Complexes. Annual review of biophysics44, 229-255 (2015).
  10. Li, H. Structural Principles of CRISPR RNA Processing. Structure (London, England : 1993)23, 13-20 (2015).
  11. Ramia, N.F., Tang, L., Cocozaki, A.I. & Li, H. Staphylococcus epidermidis Csm1 is a 3′-5′ exonuclease. Nucleic acids research42, 1129-1138 (2014).
  12. Ramia, N.F. et al. Essential structural and functional roles of the Cmr4 subunit in RNA cleavage by the Cmr CRISPR-Cas complex. Cell reports9, 1610-1617 (2014).
  13. Peng, Y., Yu, G., Tian, S. & Li, H. Co-expression and co-purification of archaeal and eukaryal box C/D RNPs. PloS one9, e103096 (2014).
  14. Hale, C.R., Cocozaki, A., Li, H., Terns, R.M. & Terns, M.P. Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex. Genes & development28, 2432-2443 (2014).
  15. Spilman, M. et al. Structure of an RNA silencing complex of the CRISPR-Cas immune system. Molecular cell52, 146-152 (2013).
  16. Shao, Y. & Li, H. Recognition and cleavage of a nonstructured CRISPR RNA by its processing endoribonuclease Cas6. Structure (London, England : 1993)21, 385-393 (2013).
  17. Shao, Y. et al. Structure of the Cmr2-Cmr3 subcomplex of the Cmr RNA silencing complex. Structure (London, England : 1993)21, 376-384 (2013).
  18. Wang, R., Zheng, H., Preamplume, G., Shao, Y. & Li, H. The impact of CRISPR repeat sequence on structures of a Cas6 protein-RNA complex. Protein science : a publication of the Protein Society21, 405-417 (2012).
  19. Wang, R. & Li, H. The mysterious RAMP proteins and their roles in small RNA-based immunity. Protein science : a publication of the Protein Society21, 463-470 (2012).
  20. Cocozaki, A.I. et al. Structure of the Cmr2 subunit of the CRISPR-Cas RNA silencing complex. Structure (London, England : 1993)20, 545-553 (2012).
  21. Zhou, J., Liang, B. & Li, H. Structural and functional evidence of high specificity of Cbf5 for ACA trinucleotide. RNA (New York, N.Y.)17, 244-250 (2011).
  22. Wang, R., Preamplume, G., Terns, M.P., Terns, R.M. & Li, H. Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure (London, England : 1993)19, 257-264 (2011).
  23. Liang, B. & Li, H. Structures of ribonucleoprotein particle modification enzymes. Quarterly reviews of biophysics44, 95-122 (2011).
  24. Zhou, J. et al. Glycosidic bond conformation preference plays a pivotal role in catalysis of RNA pseudouridylation: a combined simulation and structural study.Journal of molecular biology401, 690-695 (2010).
  25. Zhou, J., Liang, B. & Li, H. Functional and structural impact of target uridine substitutions on the H/ACA ribonucleoprotein particle pseudouridine synthase. Biochemistry49, 6276-6281 (2010).
  26. Xue, S. et al. Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle. Molecular cell39, 939-949 (2010).
  27. Mitchell, M. et al. Crystal structure and assembly of the functional Nanoarchaeum equitans tRNA splicing endonuclease. Nucleic acids research37, 5793-5802 (2009).
  28. Liang, B. et al. Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA. Nature structural & molecular biology16, 740-746 (2009).
  29. Liang, B. et al. Long-distance placement of substrate RNA by H/ACA proteins. RNA (New York, N.Y.)14, 2086-2094 (2008).
  30. Li, H. Unveiling substrate RNA binding to H/ACA RNPs: one side fits all. Current opinion in structural biology18, 78-85 (2008).
  31. Carte, J., Wang, R., Li, H., Terns, R.M. & Terns, M.P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes & development22, 3489-3496 (2008).
  32. Calvin, K. & Li, H. RNA-splicing endonuclease structure and function. Cellular and molecular life sciences : CMLS65, 1176-1185 (2008).
  33. Baker, D.L. et al. Determination of protein-RNA interaction sites in the Cbf5-H/ACA guide RNA complex by mass spectrometric protein footprinting. Biochemistry47, 1500-1510 (2008).
  34. Phipps, K.R. & Li, H. Protein-RNA contacts at crystal packing surfaces. Proteins67, 121-127 (2007).
  35. Oruganti, S. et al. Alternative conformations of the archaeal Nop56/58-fibrillarin complex imply flexibility in box C/D RNPs. Journal of molecular biology371, 1141-1150 (2007).
  36. Min, D., Xue, S., Li, H. & Yang, W. ‘In-line attack’ conformational effect plays a modest role in an enzyme-catalyzed RNA cleavage: a free energy simulation study. Nucleic acids research35, 4001-4006 (2007).
  37. Matera, A.G., Terns, R.M. & Terns, M.P. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nature reviews. Molecular cell biology8, 209-220 (2007).
  38. Liang, B., Xue, S., Terns, R.M., Terns, M.P. & Li, H. Substrate RNA positioning in the archaeal H/ACA ribonucleoprotein complex. Nature structural & molecular biology14, 1189-1195 (2007).
  39. Li, H. Complexes of tRNA and maturation enzymes: shaping up for translation. Current opinion in structural biology17, 293-301 (2007).
  40. Calvin, K. & Li, H. Achieving specific RNA cleavage activity by an inactive splicing endonuclease subunit through engineered oligomerization. Journal of molecular biology366, 642-649 (2007).
  41. Xue, S., Calvin, K. & Li, H. RNA recognition and cleavage by a splicing endonuclease. Science (New York, N.Y.)312, 906-910 (2006).
  42. Trotta, C.R., Paushkin, S.V., Patel, M., Li, H. & Peltz, S.W. Cleavage of pre-tRNAs by the splicing endonuclease requires a composite active site. Nature441, 375-377 (2006).
  43. Rashid, R. et al. Crystal structure of a Cbf5-Nop10-Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita. Molecular cell21, 249-260 (2006).
  44. Randau, L. et al. The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves noncanonical bulge-helix-bulge motifs of joined tRNA halves. Proceedings of the National Academy of Sciences of the United States of America102, 17934-17939 (2005).
  45. Oruganti, S., Zhang, Y. & Li, H. Structural comparison of yeast snoRNP and spliceosomal protein Snu13p with its homologs. Biochemical and biophysical research communications333, 550-554 (2005).
  46. Calvin, K., Hall, M.D., Xu, F., Xue, S. & Li, H. Structural characterization of the catalytic subunit of a novel RNA splicing endonuclease. Journal of molecular biology353, 952-960 (2005).
  47. Zhang, Y. & Li, H. Structure determination of a truncated dimeric splicing endonuclease in pseudo-face-centered space group P2(1)2(1)2. Acta crystallographica. Section D, Biological crystallography60, 447-452 (2004).
  48. Moore, T., Zhang, Y., Fenley, M.O. & Li, H. Molecular basis of box C/D RNA-protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA. Structure (London, England : 1993)12, 807-818 (2004).
  49. Aittaleb, M., Visone, T., Fenley, M.O. & Li, H. Structural and thermodynamic evidence for a stabilizing role of Nop5p in S-adenosyl-L-methionine binding to fibrillarin. The Journal of biological chemistry279, 41822-41829 (2004).
  50. Rashid, R. et al. Functional requirement for symmetric assembly of archaeal box C/D small ribonucleoprotein particles. Journal of molecular biology333, 295-306 (2003).
  51. Aittaleb, M. et al. Structure and function of archaeal box C/D sRNP core proteins. Nature structural biology10, 256-263 (2003).
  52. Lima, S., Hildenbrand, J., Korostelev, A., Hattman, S. & Li, H. Crystal structure of an RNA helix recognized by a zinc-finger protein: an 18-bp duplex at 1.6 A resolution. RNA (New York, N.Y.)8, 924-932 (2002).
  53. Story, R.M., Li, H. & Abelson, J.N. Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. Proceedings of the National Academy of Sciences of the United States of America98, 1465-1470 (2001).
  54. Li, H. & Abelson, J. Crystal structure of a dimeric archaeal splicing endonuclease. Journal of molecular biology302, 639-648 (2000).
  55. Li, H., Trotta, C.R. & Abelson, J. Crystal structure and evolution of a transfer RNA splicing enzyme. Science (New York, N.Y.)280, 279-284 (1998).
  56. Abelson, J., Trotta, C.R. & Li, H. tRNA splicing. The Journal of biological chemistry273, 12685-12688 (1998).
  57. Li, H., Dunn, J.J., Luft, B.J. & Lawson, C.L. Crystal structure of Lyme disease antigen outer surface protein A complexed with an Fab. Proceedings of the National Academy of Sciences of the United States of America94, 3584-3589 (1997).
  58. Li, H. & Lawson, C.L. Crystallization and preliminary X-ray analysis of Borrelia burgdorferi outer surface protein A (OspA) complexed with a murine monoclonal antibody Fab fragment. Journal of structural biology115, 335-337 (1995).
  59. Li, H. et al. Crystallographic studies of isosteric NAD analogues bound to alcohol dehydrogenase: specificity and substrate binding in two ternary complexes. Biochemistry33, 11734-11744 (1994).
  60. Li, H. et al. Crystallographic studies of two alcohol dehydrogenase-bound analogues of thiazole-4-carboxamide adenine dinucleotide (TAD), the active anabolite of the antitumor agent tiazofurin. Biochemistry33, 23-32 (1994).
  61. Goldstein, B.M. et al. CNAD: a potent and specific inhibitor of alcohol dehydrogenase. Journal of medicinal chemistry37, 392-399 (1994).
  62. Goldstein, B.M. et al. C-glycosyl bond conformation in oxazofurin: crystallographic and computational studies of the oxazole analogue of tiazofurin. Journal of medicinal chemistry37, 1684-1688 (1994).
  63. Li, H., Kennedy, S.D. & Goldstein, B.M. Solid-state and solution conformations of isotiazofurin: crystallographic, computational and 1H NMR studies. Acta crystallographica. Section B, Structural science49 ( Pt 4), 729-738 (1993).
  64. Li, H. & Goldstein, B.M. Carboxamide group conformation in the nicotinamide and thiazole-4-carboxamide rings: implications for enzyme binding. Journal of medicinal chemistry35, 3560-3567 (1992).
  65. Mitchell, M.H. & Li, H. DNA and RNA Modification Enzymes, Structure, Mechanism, Functions, Cellular Interactions and Evolution.
  66. Li, H. Protein-Nucleic Acid Interactions: Structural Biology.